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We describe a general method for modifying a given finite-difference scheme by
representing the effects of the subgrid scales in terms of the resolved scales through
enslaving. The new scheme is more accurate in certain parameter regimes while
retaining the time-step stability of the original scheme. We consider two general
enslaving relations: an approximate enslaving based on truncation analysis and an
exact enslaving based on the dynamics of the governing equation. We find that the
modified schemes based on the exact enslaving eliminate unphysical oscillations,
producing monotone solutions even when the original difference schemes do not,
have this property. We offer a truncation analysis to justify this property. We apply
our enslaving technique to advection–diffusion equations in both one and two spatial
dimensions. c© 2002 Elsevier Science (USA)

1. INTRODUCTION

In previous works [3–7], we have described a procedure, based on enslaving, that improves
both the accuracy and computational efficiency of a given finite difference scheme. The
increase in accuracy is the result of estimating the effects of the small scales that are
unresolved on the mesh in terms of the larger resolved scales. The modified, or enslaved
scheme, is actually constructed to approximate the solution that the original scheme would
generate on a finer mesh. Although the new scheme is more expensive to compute, we have
found that in many parameter regimes the added expense is more than compensated by the
increase in accuracy.

The idea of enslaving the unresolved scales of motion to the resolved scales has been
shown to be effective in several settings. In [4] and [6] we applied the method to the
one-dimensional Burgers’ Equation with time-dependent forcing. The enslaving relation
between the large and small scales was based on truncation analysis and did not depend
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directly on the dynamics of the governing equations. This approximate enslaving results in
a modified scheme that is never less accurate, has the same temporal stability, and maintains
the same memory requirements as the original scheme. In [5] and [7] we showed that the
underlying idea of enslavement could be applied to flows in which dissipation is not part
of the dominant balance, e.g., such as the circulations of the ocean and the atmosphere.
In these papers we constructed several enslaved schemes and applied them to a variety
of geophysical flows including the wind-driven double-gyre problem, which is a shallow-
fluid flow in an idealized ocean basin. In each case, we demonstrated quantitatively an
improvement in computational efficiency.

Our method should not be viewed as a procedure to construct a scheme, but rather as
one to improve a given scheme. Our implicit assumption is that the original scheme is
appropriate for the given problem. The only claim we make is that our construction leads to
a “better” scheme than the one from which we started. Specifically, it is better in the sense
that less CPU is required to achieve a desired level of accuracy (i.e., the computational
efficiency). Since stability considerations typically dictate the time-step decrease as some
power of the grid spacing, the excess cost of enslaving is more than compensated by our
ability to use the same time step in the enslaved scheme as in the original scheme while
achieving the accuracy of a more finely resolved mesh.

In this paper we examine a new form of the enslaving relation that we construct by
ignoring certain time derivatives in the governing PDE. This closure leads to an algebraic
relation between the resolved and unresolved scales of motion that we solve exactly. We
will compare this exact enslaving to the approximate enslaving that results from truncation
analysis. While the approximate enslaving is simpler to implement and is generally more
computationally efficient, the exact enslaving has the feature that it eliminates unphysical
oscillations in the numerical solution. Both enslavings reproduce the accuracy of a standard
scheme computed on a mesh twice as fine in parameter regimes where the time derivatives
are not part of the principal balance.

In the next section we recall some specifics of the construction of an enslaved difference
scheme. In Section 3 we derive both the approximate and exact enslaving for a pair of
one-dimensional PDEs. Numerical results are provided in this section along with a com-
parison of the accuracy and monotonicity properties of the two enslavings. In Section 4
we generalize the same procedure to a two-dimensional advection–diffusion equation and
apply the approximate enslaving to the shallow-water equations.

2. BACKGROUND

To construct an enslaved scheme, we assume that we are given a discretized finite-
difference equation that approximates the nodal values of the solution of a PDE to some
order of accuracy. Our goal is to modify this discretization so as to produce solutions of
higher accuracy. Of course, one can always improve the accuracy of a well-posed numerical
scheme by increasing the resolution. Thus, an important aspect of our modification is that the
new equations should be computationally more efficient; i.e., the modified scheme should
require less CPU time than the original scheme to produce a solution of a specified level of
accuracy.

Our strategy is to construct a modified scheme on a coarse mesh that reproduces the
accuracy of the original scheme on a twice-fine mesh. Modifications based on this strategy,
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even if completely successful, cannot improve the order of accuracy. That is, the error of
the original scheme on the finer mesh will have the same functional dependence on the
grid resolution as the original scheme, but with a smaller coefficient. This feature of the
enslaving is explicitly exhibited in Section 3.2.

The increased efficiency results from the relationship between the allowable time step and
the given grid spacing in the fully discretized finite-difference scheme. Stability typically
dictates that �t ∼ �x p. For example, the constant p would be 2 for explicit time-stepping
algorithms employing the usual three-point diffusion operator in one spatial dimension.
In this case, refining the spatial resolution by a factor of 2 implies an eight-fold increase
in the computational work for a one-dimensional problem. We will show that the time
step of the enslaved scheme is governed by the spatial resolution of the coarse mesh.
Thus, we can improve the accuracy of simulation without reducing the computational time
step.

Schematically, our implementation of the enslaving strategy involves the following
steps:

1. Define a transformation of variables that maps the degrees of freedom of the fine
mesh onto the coarse mesh. Half the variables on the coarse mesh represent the average
solution in a cell—the large scales—and the other half represent smaller scales that will be
unresolved on the coarse mesh.

2. Transform the original scheme on the twice-fine mesh to the new variables on the
coarse mesh and form the evolution equations for the new variables.

3. Apply a closure assumption to the new evolution equation for the small scales. This
closure yields a diagnostic relation between the small scales and the large scales.

4. Solve the diagnostic equation to express the small scales in terms of the larger scales.
This is the enslaving relation.

5. Implement this relation in the new equation for the large scales. The final result is our
improved discretization.

2.1. Coordinate Transformations

To illustrate the first step, we consider a one-dimensional problem where we apply a
given difference scheme on a mesh whose cells are �x

2 in length (see Fig. 1). On this fine
mesh, there are approximately 2N cells (depending on the precise relation between the fine
and coarse meshes) and therefore 2N degrees of freedom. We label these 2N degrees of

FIG. 1. The fine mesh (top) and the coarse mesh.
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freedom alternately with either α or β defined by

αi ≈ u(i�x)

βi ≈ u

(
(2i + 1)

�x

2

)
.

(Note that α and β are the same variable evaluated at even and odd nodes; this notational
distinction is made only to facilitate our description of the variable transformation.)

The idea now is to define a change of variables that transforms the calculation of 2N
nodal values (α, β) of the solution on the fine grid to the calculation of N nodal values ai

and N approximations to the spatial derivative bi on the coarse mesh (Fig. 1). Namely, we
want to define ai and bi such that

ai ≈ u(i�x)

bi ≈ �x
∂u

∂x

∣∣∣∣
x=i�x

.

In order to implement the change of variables, we need to express α and β as functions of a
and b. Given the above interpretation of a and b, the first difference of bi should approximate
the second difference of the solution on the fine mesh, αi+1 + αi − 2βi = bi+1 − bi . With
this motivation, we choose

αi = ai
(2.1)

βi = (ai+1 + ai )

2
+ (bi − bi+1)

2
,

for 0 ≤ i ≤ N − 1. The relations in (2.1) provide an explicit definition of an and an implicit
definition bn up to a constant (for instance, b0 or bN ).

As shown in [4], when αi and βi approximate sufficiently smooth solutions, the above
definition implies

bi = 1

4

∂u(i�x)

∂x
�x +O(�x3). (2.2)

Notice that b
a ∼ O(�x). Thus, bi is representative of the small scales (in both amplitude

and spatial extent) while ai represents the large scales of the solution.

2.2. The Enslaving

Ultimately, given evolution equations for αi (and equivalently for βi ), the enslaved dif-
ference scheme consists of equations for ai only. Hence, we require diagnostic enslaving
relations for the bi values in terms of the ai . In this section, we consider two enslavings.
The first is the simpler to implement and is based only on truncation error. Equation (2.2)
suggests we can approximate bi by

bi = ai+1 − ai−1

8
.

This enslaving of b has been used successfully in the context of the rotating-shallow-water
equations in [5] and [7]. It is the more efficient and the simpler to implement.
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An explicit exact enslaving can also be constructed from the underlying PDE. Frequently,
the evolution equation for a only involves the quantity bi+1 − bi . An expression for this
quantity may be obtained by neglecting certain time derivatives. Considering transport
equations that include the Laplacian operator explicitly, the general evolution equation at
the βi node has the form

dβi

dt
− 4ν

�x2
(bi+1 − bi ) = R(ai , bi ),

where R represents the remainder of the equation including discretized nonlinear and forcing
terms. Neglecting both time derivative and correction terms of O(�x2) in R(ai , bi ) results
in the enslaving

bi+1 − bi = −�x2

4ν
R(ai , 0). (2.3)

Enslaving through the dissipative term is only one possibility. It is also possible to enslave
through damping terms or rotational terms in a two-dimensional setting. As shown below,
the exact enslaving produces a monotone scheme, even when the original scheme does not
have this property.

Once the enslaving b(a) is implemented, an evolution equation for ai is formed. Any
time-stepping method may be chosen to advance the ai . However, the use of multipass time
integrators introduces complications in the enslaving process. To construct the enslaving
for a two-pass scheme of the form

ũn
i, j = P1

(
un

i, j

)
,

un+1
i, j = P2

(
ũn

i, j

)
,

we compute ãn
i, j by writing P1(an, bn), where the bn are known functions of an given by

the enslaving. The resulting ãi, j could then be used to calculate b̃, needed in P2. In practice,
however, we have found that bn

i, j is sufficiently close to b̃n
i, j to be used in both passes. This

leads to a simplified algorithm and modest improvements in efficiency.

2.3. Computational Efficiency

The computational advantage of the new scheme on a coarse grid over the original scheme
on the fine grid results from maintaining the time-step restrictions of the coarse grid. For
physical systems where diffusion is only one of several processes modeled, the time step
of explicit integration methods are limited for numerical stability by

�t ≤ C�x p,

where p is generally 1 or 2 and C is a constant that depends on the solution but not �x .
Since the enslaved scheme is derived from the given scheme on the twice-fine mesh, we

expect that the enslaved scheme will have at most the cost per cycle of the original scheme
computed on the twice-fine mesh. In practice, we observe that the enslaved scheme is about
80% of that cost. Thus, if our assumptions concerning the time derivatives are correct and
if the enslaved scheme on the coarse mesh has the accuracy of the given scheme on the
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fine mesh, there will be a 50% decrease in CPU requirements over the original scheme
when the time step is limited by the Courant condition (p = 1). In the worst case (i.e., the
enslaved scheme is only as accurate as the original coarse-mesh scheme), the calculation
of the enslaving relations could result in a twofold increase in computational expense. The
computational efficiency of the enslaving procedure is studied in [4].

3. ONE-DIMENSIONAL APPLICATIONS

In this section we illustrate the ideas and the generality of the enslaving procedure
outlined in the previous section. The enslavings are applied to several finite difference
approximations of one-dimensional PDEs.

3.1. Burgers’ Equation

As a first example, we consider Burgers’ equation with external forcing.

∂u

∂t
− λ

∂2u

∂x2
+ u

∂u

∂x
= f (x, t),

(3.1)
u(x, 0) = u0(x),

where the viscous coefficient λ > 0 is given, and u0(x) is a given smooth function satisfying
homogeneous Dirichlet boundary conditions. We assume the second-order accurate spatial
discretization

dui

dt
− λ

�x2
(ui+1 − 2ui + ui−1) + θ

u2
i+1 − u2

i−1

4�x
+ (1 − θ)

ui (ui+1 − ui−1)

2�x
= fi , (3.2)

where the parameter θ mixes advective and flux form approximations of the transport terms
−0 ≤ θ ≤ 1. The difference equations on the fine mesh (α, β) can be written as

dαi

dt
= 4λ

�x2
(βi − 2αi + βi−1) − θ

β2
i − β2

i−1

2�x
− (1 − θ)

αi (βi − βi−1)

�x
+ fi

(3.3)
dβi

dt
= 4λ

�x2
(αi+1 − 2βi + αi ) − θ

α2
i +1 − α2

i

2�x
− (1 − θ)

βi (αi+1 − αi )

�x
+ fi+1/2.

At this point the relations given in (2.1) could be used to derive an evolution equation
for an . However, the appearance of b in the Laplacian term in undesirable, since it would
adversely affect the time-step criteria. Indeed, the discrete Laplacian at the αn node is

4(βi − 2αi + βi−1)

�x2
= 2(ai+1 − 2ai + ai−1)

�x2
− 2(bi+1 − bi−1)

�x2
.

To avoid the appearance of b in the Laplacian, we will instead approximate ai as the average

ai ≈ αi

2
+ βi + βi−1

4
, (3.4)

and then take corresponding linear combinations of the equations in (3.3). In the final
scheme, b will only be constructed approximately as a function of a. Therefore, we have
a choice in which term to place this error; either in the dissipative term or in the time
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derivatives. Since our approximations to b assume small time derivatives, it is preferable to
construct an enslaved scheme that leaves the dissipative term independent of b.

We set

〈 f 〉i = fi

2
+ fi−1/2 + fi+1/2

4
, 〈 f ′〉i = fi+1/2 − fi−1/2

4

and

Ai = ai −
(

αi

2
+ βi + βi−1

4

)
= 1

8

(
δx bi − δ2

x ai
)
,

where

δ2
x hi := (hi+1 − 2hi + hi−1), δx hi := hi+1 − hi−1.

Now the term Ai term is of order αi�x2. We have already dropped terms of the order dα
dt in

our closure, and so we are also justified in dropping d Ai
dt . Then the enslaved equation for ai

is

dai

dt
− λ

�x2
(ai+1 − 2ai + ai−1) + (2 + θ)

a2
i+1 − a2

i−1

16�x
+ (2 − θ)

ai (ai+1 − ai−1)

8�x

− 1

8�x
((ai+1 + ai )(bi+1 − bi ) − (ai + ai−1)(bi − bi−1)).

= 〈 f 〉i . (3.5)

First, we consider the approximate enslaving based purely on truncation analysis

bi = ai+1 − ai−1

8
. (3.6)

As shown in [4] this enslaving produces a scheme that possesses a number of desirable
properties. First, when the solution is near steady state, the enslaved scheme has the ac-
curacy of the original scheme (3.2) computed on a twice-fine grid. Second, we observe
computationally that the enslaved scheme is never less accurate than the original scheme,
regardless of the temporal behavior of the solution. Finally, the time-step restrictions for
any temporal discretization of (3.2) and (3.5) are the same.

Next we construct the exact enslaving for Burgers’ equation. To implement the enslaving
we need to find bi+1 − bi in (3.5) as a function of ai . We find this quantity by applying the
change of variables given in (2.1) to the differencing of Burgers’ equation at the βi node.
We derive

dβi

dt
− 4λ

�x2
(bi+1 − bi ) + a2

i+1 − a2
i

2�x
+ 1 − θ

4�x
(ai+1 − ai )(bi − bi+1) = fi+1/2.

Neglecting dβi/dt and keeping only the terms that lead to second-order corrections, we
construct the exact enslaving

bi+1 − bi = �x2

4λ

[
a2

i+1 − a2
i

2�x
− fi+1/2

]
. (3.7)
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3.2. A Comparison of Enslavings

In general, the exact enslaving (3.7) is not an efficient enslaving in terms of computational
effort, particularly in higher space dimensions. As previously mentioned, the approximate
enslaving (3.6) is more efficient, although it uses no information about the dynamics of the
b equation. However, a standard truncation analysis reveals that the two enslavings (3.6)
and (3.7) are close when time derivatives are small. From the approximate enslaving, (3.6),
we find

bi+1 + bi−1 − 2bi = 1

4
uxxx�x3 + O(�x5).

Using Burgers’ Equation, we can write this truncation error as

bi+1 + bi−1 − 2bi = �x3

8λ
(u2)xx − �x3

4λ

∂ f

∂x
+ �x3

4λ

∂ux

∂t
+ O(�x5).

The exact enslaving given by (3.7) approximates

bi+1 + bi−1 − 2bi = �x3

8λ
(u2)xx − �x3

4λ

∂ f

∂x
+ O(�x5).

The two enslavings formally differ by the term �x3

4λ
∂ux
∂t .

The reason that the enslaved scheme is more accurate than the given scheme in certain
regimes becomes clear upon comparing truncation analysis of the two schemes. The spatial
truncation error for the standard scheme is

T s
i =

(
λ

12
uxxxx − uuxxx

6
− θ

ux uxx

2

)
�x2 + O(�x4),

and the spatial truncation error for the enslaved scheme using (3.6) is

T e
i =

(
λ

12
uxxxx − 5uuxxx

48
− (3 + 2θ)

ux uxx

16
+ fxx

16

)
�x2 + O(�x4). (3.8)

If we take two spatial derivatives of Burgers’ equation at steady state, we obtain

−λuxxxx + 3ux uxx + uuxxx = fxx .

By replacing fxx in (3.8), we find that the error introduced by averaging the forcing over
three grid points interacts with the error of the coarse scheme so that T e

i = (1/4)T s
i when

time derivatives are small. A similar analysis holds for the exact enslaving (3.7).
One could, of course, reduce the truncation error of the standard scheme by any amount

by subtracting appropriate approximations of the truncation error. Such a procedure would,
however, adversely affect the time-step restrictions for the stability of the scheme (i.e.,
decrease the allowable time step). Even if the PDE at steady state is used to change the
functional dependence of the truncation error, the resulting modified scheme will likely be
less efficient than the original difference scheme. The combination of the change of variables
from fine to coarse mesh and the use of the governing PDE at steady enables the enslaving
procedure to reduce the truncation error without adversely affecting the original properties
of the given difference scheme. In addition, the specific form of the exact enslaving, (3.7),
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forces an interaction between the truncation error of the nonlinear term and the dissipative
term in a way that results in a monotone scheme, even when the original scheme is not
monotone. This feature will be proved in the next section.

An an illustration of the properties of the two enslavings, we force Burgers’ Equation
so that u(x, t) = η sin(πx) + ε sin(πx)(x cos(ωt) + (1 − x) sin(ωt)) is an exact solution
(cf. [4]). The parameters (η, ε, ω) allow us to vary the importance of the temporal derivatives.
We choose η = ε = 0.5 and ω = 2π , which produces O(π) contributions from the time
derivative. The standard scheme is an improved Euler method time discretization of (3.2)
with θ = 2/3, λ = 0.05, �t = 0.001 and �x = 1/60.

As a diagnostic, we compare the error of the standard scheme to that of the enslaved
scheme. We define the ratio of the L∞ norm of the difference of the exact solution, U (t),
and the standard scheme, u(t), to the difference of the exact solution and the enslaved
scheme, v(t):

R(t) = ‖u(t) − U (t)‖∞
‖v(t) − U (t)‖∞

.

For a given second-order accurate spatial differencing, the error ratio will approach R(t) = 4
when the enslaved scheme nearly approximates the the solution on the fine grid.

Figure 2 indicates the error ratio as a function of time for two different enslavings: the
approximate enslaving given in (3.6) and the exact enslaving given by (3.7). The average
value of the ratio, R(t), over the run is 2.86 for the approximate enslaved scheme and 2.04
for the exact enslaved scheme.

For either choice of enslavings, the accuracy of the modified scheme is markedly increased
over that of the original scheme for most of the time period. The instantaneous improvement
is often well above the theoretical value of R(t) = 4 while the time-averaged ratio is close
to this value. Notably, R(t) > 1 throughout indicating that the enslaved scheme solutions
are never less accurate than the original, coarse grid scheme solutions, even during periods
of fast oscillation.

FIG. 2. Burgers’ Equation with a time-dependent force and known exact solution. The error ratio is plotted
using the approximate enslaving, (3.6), and the exact enslaving, (3.7).
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3.3. Nonoscillatory Properties

In addition to improving the accuracy of the solution, the exact enslaving relations can
further improve the stability (i.e., relax the time step restrictions) and reduce the unphysical
oscillations of a given scheme. To investigate the damping of spurious numerical oscillations,
we first consider the exact enslaving of the linear advection-diffusion equation:

∂u

∂t
+ C

∂u

∂x
= ν

∂2u

∂x2
, (3.9)

where C is a constant positive velocity and ν is a small but positive diffusion coefficient. A
standard, second-order accurate spatial differencing of (3.9) on the (α, β) grid is

dαi

dt
= 4ν

�x2
(βi − 2αi + βi−1) − C

�x
(βi − βi−1)

(3.10)
dβi

dt
= 4ν

�x2
(αi+1 − 2βi + αi ) − C

�x
(αi+1 − αi ).

Following the program defined above, we derive the following evolution equation for a:

dai

dt
= ν

�x2
(ai+1 − 2ai + ai−1) − C

2�x
(ai+1 − ai−1) + C

4�x

(
δ2

x bi
)
. (3.11)

To implement the enslaving in (3.11), we need to replace δ2
x bi by a function of ai . We

find this relationship by applying the change of variables given in (2.1) to the equation for
βi in (3.10); specifically, by neglecting dβi/dt , we construct the enslaving

bi+1 − bi = C�x

4ν
(ai+1 − ai ). (3.12)

Inserting (3.12) into the equation for ai , we derive the enslaved scheme

dai

dt
= ν+

e

�x2
(ai+1 − 2ai + ai−1) − C

2�x
(ai+1 − ai−1), (3.13)

where the augmented diffusion coefficient

ν+
e = ν

(
1 + C2�x2

16ν2

)
. (3.14)

For explicit time-stepping schemes, one can show that solutions of (3.10) solved on a
mesh of size �x are monotonic (nonoscillatory) only when the condition Re�x = C�x

ν
≤ 2

is satisfied, (cf. [1], [10]). Using the above definition of the numerical diffusion, the grid
Reynolds number for the enslaved scheme is

Ree = C�x

ν+
e

= Re�x

(
1

1 + (Re�x
4

)2

)
.

In Fig. 3 (left panel) we plot the enslaved grid Reynolds number versus the grid Reynolds
number on the coarse mesh. A grid Reynolds less than two implies the scheme is monotone.
The enslaved scheme is evidently monotone for all values of Re�x . The right panel in
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FIG. 3. The relation between the grid Reynolds number in the standard and enslaved schemes (left). The
solutions (right) of the advection–diffusion equation with constant advective velocity use forward Euler time
integration and a grid Reynolds number of Re�x = 8.0 corresponding to a enslaved grid Reynolds number of 1.6.

Fig. 3 shows the solutions of the standard and enslaved schemes when Re�x = 8.0. Periodic
boundary conditions are imposed, ν = 0.0002, C = 0.1, and �x = 1/60, and an improved
Euler method is used for the time integration with �t = 0.01. Note that the standard scheme
has unphysical oscillations while the enslaving relation introduces sufficient numerical
diffusion to ensure monotonicity of the solution.

To illustrate the effects of the enslaving procedure on a scheme that is initially monotone,
we next consider the upwind differencing of (3.9)

un+1
i = un

i + �t
ν

�x2

(
un

i+1 − 2un
i + un

i−1

)− �t
C

�x

(
un

i − un
i−1

)

= un
i

[
1 − 2ν�t

�x2
− C�t

�x

]
+ un

i+1

[
ν�t

�x2

]
+ un

i−1

[
ν�t

�x2
+ C�t

�x

]
. (3.15)

We have now assumed C > 0. Because the equations are linear, the scheme is monotone if
and only if each of the coefficients by the un

i in (3.15) is positive [1]. The last two coefficients
are clearly positive. Positive definiteness of the first coefficient requires

2 + Re�x <
�x2

ν�t
. (3.16)

Next we apply the enslaving procedure. In this setting (2.3) becomes

bi+1 − bi = Re�x

4
(ai+1 − ai ).

The semi-discrete enslaved scheme is

da

dt
= ν−

e

�x2
(ai+1 − 2ai + ai−1) − C

�x
(ai − ai−1),

where

ν−
e = ν

(
1 +

(
Re�x

4

)2

−
(

Re�x

4

))
.

For Re�x ∈ (0, 4), the enslaving relation actually reduces the effective numerical viscosity
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present in the upwinding scheme. Upon discretizing the time, we find

an+1
i = an

i

[
1 − 2ν−

e �t

�x2
− C�t

�x

]
+ an

i+1

[
ν−

e �t

�x2

]
+ an

i−1

[
ν−

e �t

�x2
+ C�t

�x

]
.

Again, the scheme will be monotone provided all of the coefficients are positive. Positive
definiteness of the first coefficient requires

2
ν−

e

ν
+ Re�x <

�x2

ν�t
. (3.17)

The second and third coefficients are clearly positive.
Figure 4 shows a plot of the maximum allowable time step as a function of Re�x for

fixed �x and ν (the velocity is variable, and hence Re�x varies as well). The maximum
allowable time step is obtained by solving for �t as a function of Re�x in the inequalities
(3.16) and (3.17). We see that, for 0 < Re�x < 4, the requirement on �t for the inequalities
to hold is less severe for the enslaved scheme. Thus, the enslaving procedure applied to an
upwind differencing has led to a monotone scheme with less severe time-step restrictions.
The right panel in Fig. 4 illustrates a case where the upwind scheme is unstable while the
enslaved scheme is not. The initial data is a top-hat function with height unity, centered at
the middle of the domain. Homogeneous Dirichlet boundary conditions are imposed. We
choose �x = 1/60, ν = 0.01, C = 0.495, and �t = 0.01. Both schemes are integrated to
T = 1.0.

The case where Re�x > 4 merits further discussion. The apparent increase in the effective
viscosity is not a failure of the enslaving concept, but rather results from using the closure
(2.3), which is not accurate in this parameter range. In particular, the problem arises from
neglecting the b-dependence in the remainder function. When the full remainder function
R(a, b) is used in (2.3) and the resulting implicit relation is solved for (bi+1 − bi ), then
the effective viscosity is decreased for all values of Re�x . This generalization is easily
implemented in one dimension, but solving the implicit relation in two or more spatial
dimensions becomes prohibitively expensive. It is unlikely that one would seriously consider
using a donor cell as a basic scheme since the enslaved scheme would remain only first-
order accurate. However, the enslaving based on truncation error would remain an effective
alternative.

FIG. 4. The maximum allowable time step for the standard and enslaved schemes for fixed grid resolution and
diffusion constant (left). Integration of the enslaved and standard schemes for the upwind discretization (right).
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The nonoscillatory properties of the exact enslaving are also present in nonlinear PDEs.
We demonstrate this analytically and also computationally by considering two examples of
Burgers’ equation without forcing. To derive the enslaved equations, we use (3.7) to write
the correction terms, i.e., the terms in (3.5) involving the slaved quantity b as

−1

64λ

[
(ai+1 + an)

(
a2

i+1 − a2
i

)− (ai + ai−1)
(
a2

i − a2
i−1

)]
.

We define the operators

δ+
x ai = ai+1 − ai

�x
, δ−

x ai = ai − ai−1

�x
.

When we use these operators, the expression for the correction term becomes

−�x2

64λ
δ+

x [(ai + ai−1)
2δ−

x ai ]. (3.18)

The dissipative term in (3.5), −λδ+
x δ−

x ai , combines with (3.18) to form the effective
dissipative term

−δ+
x

[
λ

(
1 + �x2

16λ2

(
ai + ai−1

2

)2)
δ−

x ai

]
.

In analogy to (3.14) in the linear case, we define

λe
i := λ

(
1 + �x2

16λ2

(
ai + ai−1

2

)2)
.

The exact enslaved scheme for Burgers’ equation without forcing is given by

dai

dt
− δ+

x

(
λe

i δ
−
x ai
)+ (2 + θ)

a2
i+1 − a2

i−1

16�x
+ (2 − θ)

ai (ai+1 − ai−1)

8�x
= 0. (3.19)

Analogous to the linear case (see Eq. (3.13)), the enslaving procedure produces a nonlinear
numerical viscosity that ensures the nonoscillatory behavior of the solutions. To prove that
the enslaved scheme is sign preserving, we assume an

i ≥ 0 for all i and consider a forward
Euler discretization of (3.19). The discretization may be written

an+1
i = an

i

[
1 − �t

�x2

(
λe

i+1 + λe
i

)]+ an
i+1�t

[
λe

i+1

�x2
− 2 + θ

16�x
an

i+1 − 2 − θ

8�x
an

i

]

+ an
i−1�t

[
λe

i

�x2
+ 2 + θ

16�x
an

i−1 + 2 − θ

8�x
an

i

]
.

The first term is required to be nonnegative to ensure the overall stability of the scheme; the
third term is clearly nonnegative. We define the local grid Reynolds number

Rei = an
i �x

λ
.

The second term is nonnegative provided

1 + 1

16

(
Rei+1 + Rei

2

)2

− 2 + θ

16
Rei+1 − 2 − θ

8
Rei ≥ 0.
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It is straightforward, but tedious to demonstrate that the function f (x, y) = 1 + (x + y)2

64 −
(2 + θ) x

8 − (2 − θ)
y
8 is nonnegative for all x, y ≥ 0 and 0 ≤ θ ≤ 1. Thus, the enslaved

scheme for Burgers’ Equation without forcing is sign preserving.
We further demonstrate the nonoscillatory properties in the following numerical exam-

ples. First, we study the kinetic energy spectrum resulting from the relaxation of random
initial conditions in the unforced Burgers’ Equation. In this experiment we consider only pe-
riodic boundary conditions. The initial data is constructed by varying the phases of modes
four through eight randomly with uniform distribution. The amplitude is chosen from a
Gaussian distribution with the peak at mode six. Thus, the initial data may be written

u0(x) =
N∑

k=−N

ckα1e−α2(|k|−4)2
eiθk e2π ikx ,

where θk = θ−k is randomly chosen between [0, 2π ] and the coefficients |ck | = 1, 4 ≤ |k| ≤ 8,
and zero otherwise, are chosen so that initial data is real. Each realization decays from these
initial conditions to a fixed time when the kinetic energy is stored. By varying the random
seed, statistics from 200 independent simulations are obtained. At a fixed resolution, we
ensure that both the standard and the exact enslaved schemes have exactly the same sets of
initial data.

Figure 5 shows the results of the simulations averaged at time T = 0.5, with the para-
meters λ = 0.00012, α1 = 0.05, α2 = 0.1, and θ = 2/3. The standard scheme employs an

FIG. 5. The upper-left corner shows a comparison of the averaged kinetic energy spectrum with random initial
data. The other plots graph the solution of the end of the run.
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FIG. 6. Burgers’ Equation with initial data u0 = sin(2πx). The standard scheme with �x = 1/64 is in the
upper-left corner. The upper-right corner shows the enslaved scheme; the lower-left corner shows the twice fine
scheme, and the lower right shows all three.

improved Euler method for the time discretization of (3.2) with �t = 0.001. The plot in
the upper-left corner compares the spectrum of the enslaved scheme to that of the standard
scheme at two different resolutions. The remaining plots show the individual solutions at the
end of the same realization. Notice the standard scheme on the coarse mesh (�x = 1/128)
has overshoots while the enslaved scheme does not. The overshoots cause the spurious
behavior in the energy spectrum seen in Fig. 5.

For our second example, we again consider Burgers’ Equation and assume no external
forcing is present. Here we choose the initial data u0(x) = sin(2πx), and specify the bound-
ary conditions as either periodic or homogeneous Dirichlet (since the initial data is an odd
function about the origin, these are equivalent). The standard and enslaved schemes are
the same as those used in the previous example. The diffusion constant is λ = 0.0005, and
the resolution of the coarse mesh is �x = 1/64. The initial data is allowed to decay; the
upper-left plot in Fig. 6 shows the solution at T = 0.5. The plot in the upper-right corner
is obtained from the enslaved scheme at the same time and resolution. The solution again
exhibits the nonoscillatory properties of the enslaved scheme.

4. TWO-DIMENSIONAL APPLICATIONS

In this section we generalize the enslaving procedure to multiple spatial dimensions.
The first step in the analysis requires the choice of a change of variables from a twice-fine
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FIG. 7. Fine and coarse meshes for the velocity fields.

mesh to a coarse mesh. We label the fine mesh αi, j , βi, j , γi, j and δi, j (see Fig. 7). The new
variables, αi, j , bi, j , ci, j , and di, j are chosen to approximate

ai, j ≈ u(i�x, j�y),

bi, j ≈ �x
∂u

∂x

∣∣∣∣
x=i�x,y= j�y

,

ci, j ≈ �y
∂u

∂y

∣∣∣∣
x=i�x,y= j�y

,

di, j ≈ �y�x
∂2u

∂x∂y

∣∣∣∣
x=i�x,y= j�y

.

Generalizing the one-dimensional procedure, we define the variables a, b, c, and d
through the relations

αi, j = ai, j ,

βi, j = (ai+1, j + ai, j )

2
+ (bi, j − bi+1, j )

2
,

γi, j = (ai, j+1 + ai, j )

2
+ (ci, j − ci, j+1)

2
, (4.1)

δi, j = (ai, j+1 + ai, j + ai+1, j + ai+1, j+1)

4
+ (bi, j + bi, j+1 − bi+1, j − bi+1, j+1)

4

+ (ci, j + ci+1, j − ci, j+1 − ci+1, j+1)

4
+ (di, j + di+1, j+1 − di, j+1 − di+1, j )

4
.
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The rather complicated expression for δi, j is designed to preserve certain properties of the
discrete Laplacian. Equations (4.1) could be used directly to construct an evolution equation
for αi . However, this procedure would place bi, j and ci, j in the Laplacian and adversely
affect the allowable time step. To avoid this, linear combinations of the equations, similar to
(3.4), are formed. By summing areas of overlap in Fig. 7, the linear combinations are found
to be

ai, j ≈ ai, j

4
+ βi, j + βi−1, j

8
+ γi, j + γi, j−1

8
, +δi, j + δi−1, j + δi, j−1 + δi−1, j−1

16
,

bi, j ≈ βi, j − βi−1, j

8
+ δi, j − δi−1, j + δi, j−1 − δi−1, j−1

16
,

(4.2)

ci, j ≈ γi, j − γi, j−1

8
+ δi, j + δi−1, j − δi, j−1 − δi−1, j−1

16
,

di, j ≈ (δi, j + δi−1, j−1)

16
− (δi−1, j + δi, j−1)

16
.

4.1. Advection–Diffusion Equation in 2D

To illustrate the performance of the enslaved method in multiple dimensions, we first
apply the technique of the previous section to a linear, two-dimensional, advection–diffusion
equation. We assume that the boundary conditions are doubly periodic, C = (C1, C2), and
ν is a small but positive diffusion coefficient. We consider the PDE

∂u

∂t
+ C · ∇u = ν∇2u. (4.3)

We begin by approximating (4.3) on a fine grid containing 4(N × N ) nodes (see Fig. 7).
We define

δ2
α = 4ν

�x2
{βi, j + βi−1, j − 4αi, j + γi, j + γi, j−1},

δ2
β = 4ν

�x2
{αi+1, j + αi, j − 4βi, j + δi, j + δi, j−1},

δ2
γ = 4ν

�x2
{δi, j + δi−1, j − 4γi, j + αi, j+1 + αi, j },

δ2
δ = 4ν

�x2
{γi+1, j + γi, j − 4δi, j + βi, j+1 + βi, j }.

A standard differencing of (3.9) on the α, β, γ , and δ grid is given by

dαi, j

dt
+ C1

βi, j − βi−1, j

�x
+ C2

γi, j − γi, j−1

�x
= δ2

α,

dβi, j

dt
+ C1

αi+1, j − αi, j

�x
+ C2

δi, j − δi, j−1

�x
= δ2

β,

(4.4)
dγi, j

dt
+ C1

δi, j − δi−1, j

�x
+ C2

αi, j+1 − αi, j

�x
= δ2

γ ,

dδi, j

dt
+ C1

γi+1, j − γi, j

�x
+ C2

βi, j+1 − βi, j

�x
= δ2

δ .
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Applying the change of variables on a uniform grid and taking the linear combinations
defined above, the evolution equation for ai, j becomes

dai, j

dt
= ν

8�x2

{
4 ⊗ + 4 ⊕ −δxδ

2
ybi, j − δyδ

2
x ci, j

}− C1

16�x
(δx ai, j−1 + 6δx ai, j + δx ai, j+1)

+ C1

32�x

(
δ2

x bi, j−1 + 6δ2
x bi, j + δ2

x bi, j+1 + 2δ2
xyci, j

)

− C2

16�x
(δyai−1, j + 6δyai, j + δyai+1, j )

+ C2

32�x

(
δ2

yci−1, j + 6δ2
yci, j + δ2

yci+1, j + 2δ2
xybi, j

)
.

The new scheme employs a nine-point stencil, using a combination of the two Laplacian
operators

⊕ = {ai+1, j + ai−1, j − 4ai, j + ai, j+1 + ai, j−1},

⊗ = 1

2
{ai+1, j+1 + ai+1, j−1 − 4ai, j + ai−1, j+1 + ai−1, j−1}.

To construct the enslaving we notice the a equation only requires the enslavement of
(bi+1, j − bi, j ) and (ci, j+1 − ci, j ) in terms of the variable a. The enslavings are found in a
similar manner as in the one-dimensional framework. We define

δ+
x ai, j = ai+1, j − ai, j , δ+

y ai, j = ai, j+1 − ai, j ,

and

χi, j = δ+
x (bi, j+1 + 2bi, j + bi, j−1) + δy(ci, j + ci+1, j ).

Applying the change of variables to the βi, j equation (4.4) and neglecting higher-order
corrections, we find

dβi, j

dt
− ν

�x2

((
δ2

yai, j + δ2
yai+1, j

)+ 8(bi+1, j − bi, j ) − χi, j
)

+ C1

�x
δ+

x ai, j + C2

4�x
(δyai, j + δyai+1, j ) = 0. (4.5)

Next, we add the differencing of the governing equations at the points δi, j and δi, j−1.
Furthermore, we neglect all time derivatives. We derive

χi, j = C1�x

4ν
(δ+

x ai, j+1 + 2δ+
x ai, j + δ+

x ai, j−1) + C2�x

4ν
(δyai+1, j + δyai, j ).

Inserting this into Equation (4.5) and again neglecting the time derivatives, we obtain the
enslaving

bi+1, j − bi, j = −1

8

(
δ2

yai, j + δ2
yai+1, j

)+ C1�x

32ν
(δ+

x ai, j+1 + 6δ+
x ai, j + δ+

x ai, j−1)

+ C2�x

16ν
(δyai+1, j + δyai, j ).
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FIG. 8. Two-dimensional advection. The simulation in the left panel uses an improved Euler time discretization
and centered spatial differences. The simulation in the right panel is the result of the exact enslaved scheme.

Similarly, the enslaving for the c variable is

ci, j+1 − ci, j = −1

8

(
δ2

x ai, j + δ2
x ai, j+1

)+ C1�x

16ν
(δx ai, j+1 + δx ai, j )

+ C2�x

32ν
(δ+

y ai+1, j + 6δ+
y ai, j + δ+

y ai−1, j ).

The variable di, j is not enslaved (i.e., is set to zero) since it represents a higher-order
correction.

Figure 8 illustrates, as in the one-dimensional case, the positive definiteness of the en-
slaved scheme. A uniform tensor product mesh is used with �x = �y = 1/80, and the
initial data is a Gaussian-shaped hill centered at the origin with height unity; specifically,
u(x, 0) = e−400(x2+y2). In Fig. 8 we plot contours of the advected scalar u(x, t) in (4.3)
on a unit box with periodic boundary conditions. The time integration uses a second-order
modified Euler discretization with �t = 0.001. The velocity has components (1, 1), and
the diffusion constant is ν = 0.0007 giving a grid Reynolds number of approximately 18.
The enslaved scheme is highly diffusive, but remains positive definite and monotone.

4.2. Shallow-Water Equations

As a final example we consider a more realistic geophysical application. The two-
dimensional shallow-water equations are a rational approximation to the three-dimensional
Euler equations, with the further assumption of a hydrostaticity. By including latitude-
dependent wind and Coriolis forces, these equations describe a simple approximation to
the depth-averaged dynamics of a large ocean basin. The equations are

∂h

∂t
+ ∂(uh)

∂x
+ ∂(vh)

∂y
= 0

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −∂h

∂x
+ f (1 + βy)v + ν�2u + Fu (4.6)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −∂h

∂y
− f (1 + βy)u + ν�2v + Fv,
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where the vector F represents the imposed wind forcing chosen here to be

Fu = τ cos(πy/L y)

Fv = 0.

As the original differencing scheme we choose a positive-definite two-pass scheme
(MP-DATA, [8], [9]) for the advection of the height field. The momentum field is solved
using centered spatial discretizations and an explicit second-order time integrator. The
equations are solved on a staggered grid, with the height field h located at cell cen-
ters and both components of the velocity field (u, v) located on the nodes (Arakawa
B grid).

In analogy to (3.6), the approximate enslavings for the small scale components of the
velocity field are

bi, j = ai+1, j − ai−1, j

8
,

ci, j = ai, j+1 − ai, j−1

8
.

Due to the staggering of the B grid, the height field requires a different change of variables
(see [7]). The enslaving however is exactly the same.

In order to examine the validity and efficiency of the enslaving procedure over a range
of flow conditions, we consider two separate sets of physical parameters and resolutions
producing distinctly different temporal evolutions. The specific parameter values for the
two cases are shown in Tables I and II. In each simulation, the flow was spun up from a
zero velocity state under the action of the time independent wind forcing. Throughout, we
will consider resulting differences in the domain averaged kinetic energy

E(t) =
∫

�

[
1

2
h(x, y, t)(u2(x, y, t) + v2(x, y, t))

]
d�,

as a measure.

TABLE I

Physical Parameters for the First Simulation

Coriolis parameter: f0 = 5.0 × 10−5 s−1

f = f0(1 + βy) β = 0.75
Wind stress τ0 = 0.11N m−2

Viscosity parameter ν = 300 m2 s−1

Effective gravity g′ = 0.03 ms−2

Initial upper layer depth H0 = 500 m
Domain:

East–West Lx = 1000 km
North–South L y = 2000 km

Grid resolution:
Run S33 �x = 33 km
Run S16 �x = 16 km
Run E33 �x = 33 km
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TABLE II

Physical Parameters for the Second Simulation

Coriolis parameter: f0 = 8.0 × 10−5 s−1

f = f0(1 + βy) β = 0.4
Wind stress τ = 0.1N m−2

Viscosity parameter ν = 225 m2 s−1

Effective gravity g′ = 0.03 m s−2

Initial upper layer depth H0 = 500 m
Domain

East–West Lx = 3000 km
North–South L y = 2000 km

Grid resolution:
Run SS50 �x = 40 km
Run SS100 �x = 20 km
Run EE50 �x = 40 km

For the first set of physical parameters given in Table I and corresponding to a double-gyre
situation previously studied by Jiang, Jin, and Ghil [2], the resulting flow is quasi-periodic
in time. As shown in the first panel of Fig. 9, the underresolved (�x = 33 km) standard
scheme produces extraneously high kinetic energy and a marked low frequency oscillation.
In contrast, the enslaved scheme run at the same spatial resolution produces a kinetic energy
signal comparable in both amplitude and frequency to that of the standard scheme run at
twice the resolution. Also shown are snapshots of the upper layer depth (h(x, y, t)) for the
three schemes on a randomly chosen day in the eleventh year of the simulation. Again,

FIG. 9. Time trace of the averaged kinetic energy and contour plots of the upper layer depth, h(x, y, t) for
the three simulations.
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FIG. 10. Time trace and histograms of the averaged kinetic energy for the flow given by the parameters in
Table II.

the enslaved scheme at the coarse, 33 km, resolution reproduces the smaller scale spatial
structure seen in the fine resolution but absent in the coarse standard scheme simulation.
It is the dynamics of these mesoscale eddies that determine the temporal behavior of the
basin averaged energy.

The second set of physical parameters (given in Table II) produces a much higher
Reynolds number flow with chaotic dynamics. In contrast to the quasi-periodic case, im-
proved spatial resolution now leads to a large increase in the basin averaged kinetic en-
ergy signal. Figure 10 shows the time traces and histograms of the kinetic energy for the
standard scheme at 20- and 40-km resolution and the enslaved scheme at the coarse res-
olution. As seen in the histograms, the enslaved scheme reproduces both the higher mean
energy and the broader distribution of energy states produced by the fine grid standard
scheme.

While we do not expect the enslaved scheme to track the instantaneous flow field of the
more finely refined simulation in the chaotic regime, it is sufficient for it to capture the
statistical features of the flow. Figure 11 shows the mean and the first three eigenvectors of
the upper layer depth field correlation matrix (the first three empirical orthogonal functions)
computed over a 60-year time span beginning at year 10 of the three simulations. In each,
the enslaved scheme reproduces to a rather high degree of fidelity the statistical features
given by the fine resolution standard scheme despite the large temporal variability in the
solution. The dynamics of the enslaved scheme capture both the temporal and spatial modes
that contribute to the variability of the flow.
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FIG. 11. Contours of the mean and first three EOFs of the upper layer depth for the chaotic simulations. In
each, the standard scheme at 40 km resolution is at the top, the standard scheme at 20 km resolution is in the
middle, and the enslaved scheme at 40 km resolution is shown at the bottom.

5. CONCLUSIONS

We have shown that use of enslaving, where the effects of unresolved scales of motion
are estimated in terms of the resolved scales, can improve the accuracy, computational
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efficiency, and fidelity of simulations in parameter regimes near steady state. Such parameter
regimes, where the time derivatives are not part of the principal balance, are characteristic
of many interesting flows in geophysics, reaction–diffusion kinetics, etc.

The methodology of enslaving does not construct an algorithm, but rather modifies a given
algorithm. Specifically, the modified algorithm is constructed to reproduce the averaged
results of a finely resolved simulation on a coarser mesh. We have described this construction
procedure for finite-difference and finite-volume schemes in a general framework, which
should be extensible to many evolution equations beyond the examples we have chosen.

We have described and compared two techniques of enslaving. The first is based on trun-
cation analysis and ignores information that can be derived from the evolution equations
themselves. The second enslaving results from analyzing asymptotic balances in the evo-
lution equations of the small scales. The first enslaving is simpler, both conceptually and
for practical implementation, and is more computationally efficient. The second enslaving
has the additional feature that it produces nonoscillatory schemes even when the original
schemes do not have this property.

Finally, we have described an application to a chaotic geophysical flow to illustrate that
the enslaved schemes, run on coarse grids, can accurately reproduce the statistical properties
of these flows as found on more finely resolved grids.
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